

Case study | Nava PBC

Form design approaches for
downstream effects & nonlinear
navigation

By Sawyer Hollenshead

Published September 4, 2018

This is part of a series of blog posts about Nava Public Benefit Corporation's partnership
with the Centers for Medicare and Medicaid Services to design and build a new eligibility
application for millions of Americans seeking health coverage on HealthCare.gov. ​Read
more in this series ​.

In a ​previous post ​, we discussed how we structured the complex eligibility form for
HealthCare.gov, breaking it down across multiple pages. By breaking the form into
digestible chunks, we were able to simplify the interface and allow applicants to focus on
smaller bits of information at a time.

Due to the complex branching logic of the form we were building, where questions can
vary widely depending on the applicant's answers, our team encountered our next
challenge: How would we support navigating between different pages in a nonlinear
way, to perform actions like changing an answer? And what happens when changing an
answer causes questions or choices on subsequent pages to change? To solve this, we
had to describe the challenges we were addressing, identify various scenarios within the
form where these challenges might surface, and finally create design and technical
solutions to address them.

The approaches and ideas below are just that: ideas. They still require more research
and validation, but we feel they are at a level of depth and polish worth sharing to the
wider community to spur further discussion and iteration.

Components of the flow
To understand the approaches we landed on, it'll be helpful to first understand the
various components of the flow we proposed. At a high-level, the flow included:

Nava PBC 2

https://blog.navapbc.com/help-and-guidance-content-patterns-for-healthcare-gov-19997a1d7b1e
https://blog.navapbc.com/help-and-guidance-content-patterns-for-healthcare-gov-19997a1d7b1e
https://blog.navapbc.com/structuring-a-complex-eligibility-form-for-healthcare-gov-37d79a5ad6

A ​task list​ served as an introduction screen, showing the various steps an applicant will
go through to determine their eligibility. As an applicant completes each step, the task list
updates accordingly. At any point while filling out the form, an applicant can click a "View
steps" sub-navigation link to view their task list and navigate between completed and
in-progress steps. The task list also serves as a landing page for applicants who return to
the site to resume an in-progress application. This allows them to see where they last left
off. This pattern was inspired by the ​Task List pattern proposed by GDS ​.

Nava PBC 3

https://design-system.service.gov.uk/patterns/task-list-pages/

As mentioned earlier, the form's questions were displayed across multiple ​questions
pages ​. Answers on one page informs what questions are asked on subsequent pages. A
step in the task list is a group of questions pages.

Nava PBC 4

A ​dynamic choice list​ is a type of checkbox or radio list whose choices are based on
previously entered data. An example of this is a list of family members, which can vary in
size, and is entered by the applicant in the first section of the form. Various questions in
the form list family members in order to identify what circumstances apply to whom.

Nava PBC 5

A ​section review page ​ follows the last questions page of each step, and summarizes the
information the applicant entered in that section, providing an opportunity to navigate
back and change an answer or fix a mistake.

A framework for describing downstream effects
A downstream effect can occur when an applicant changes their answer, or
adds/removes an item used in a dynamic choice list. This causes follow-up questions to
change, either by making the questions hidden or visible in the flow, requiring a question
to be re-answered, or changing the list of choices.

To describe the challenges and approaches associated with downstream effects, we
found the following framework to be helpful, which describes the four different states of a
follow-up question.

Nava PBC 6

● 🛑Unanswered ​: This question has newly appeared downstream, wasn't
previously answered, or it was previously optional but is now required. For
example, adding a family member would result in questions about that family
member's finances to appear downstream.

● ⚠ Unverified : This question retained its previous answer, but its list of choices
have changed. For example, adding a family member would result in this new
family member appearing in follow-up questions that list family members as
options.

● ✅Unaffected ​: This question retained its previous answer and its options and
validation rules were unaffected by the upstream change. For example, changing
a family member's birthday doesn't affect the email you entered as a preferred
contact method.

● 🙈Hidden ​: This question was previously visible but is no longer needed. For
example, removing a family member would result in any downstream questions
about that family member to be hidden as they are no longer relevant.

Approaches to downstream effects
We proposed two approaches to downstream effects, each with their own tradeoffs.

A linear approach to downstream effects, bypassing only hidden question pages

The first was a ​linear approach ​, where after an applicant navigates back and changes
their answer, they then proceed linearly through all follow-up questions regardless of
whether those questions were affected by the change or not.

This approach was the most technically simple, and so was a good candidate for at least
the MVP. A downside of this approach is that, if the form has many follow-up pages, it's
possible the applicant will be forced to navigate back through many unaffected follow-up
questions when they only needed to make a simple fix to a preceding question. We were
okay with this tradeoff though. Our hypothesis was, even though it might be irritating to
go through all the follow-up pages again, it wouldn't be a confusing experience since the
applicant had gone through this flow already. This is in contrast to the second approach
we explored.

Nava PBC 7

A nonlinear approach to downstream effects, bypassing unaffected and hidden question pages

The second was a ​nonlinear approach ​, where after an applicant navigates back and
changes their answer, they then proceed nonlinearly to the next page with an
unanswered or unverified question, bypassing any pages with unaffected question. This
approach has the benefit of not forcing the applicant to go through the entire flow again,
and provides the shortest possible path to making a change and continuing the
application. However, the technical implementation of such a nonlinear approach is
non-trivial and further usability testing is necessary to validate whether this flow is
intuitive for all applicants.

Another challenge we faced was letting an applicant know when a previously answered
dynamic choice list has changed. For example, when a new family member is added,
downstream lists now include that member. These questions would now be considered
unverified, since some members may have been previously selected, but we can't be
certain whether the new member should also be selected.

Nava PBC 8

Example message above an unverified dynamic choice list, where the options have changed and
"Morgan" was previously selected.

One approach to this is to clear the previous selections and prompt the applicant to
re-select everyone who the question applies to. This would change the question from
being unverified to unanswered. This felt too heavy handed, so we also explored how we
might retain the previous answers while making it clear to the applicant that something
about the list has changed. We did this by displaying a callout directly above the list, with
a message mentioning that the options have changed since they last answered the
question, and to confirm their answer. Further testing is needed to validate whether
applicants notice this message.

Navigating in-progress applications
By including the task list and review pages as methods for navigating the form, and by
supporting unique permalinks for each page of the form, there were situations where an
applicant could jump from one section of the form to another unrelated section of the
form. For example, they could change the URL in their browser or navigate to a previous
step in the task list.

Nava PBC 9

Since follow-up questions are influenced by preceding questions, we first had to identify
which questions belonged within each step, and the status of each of those questions
(using the question status framework described earlier). We then used that information to
determine the status of each step:

● ✅Complete ​: A step with 100% verified and answered questions
● ✏ In-progress ​: A step directly following a completed step
● 🔒 ​Disabled ​: Any step following an in-progress step

Decision tree for determining the status of a step and where applicants are directed when
entering that step

One question we confronted was identifying where to take the applicant after they jump
to a completed or in-progress step.

For in-progress steps, we proposed taking the applicant directly to the first unverified or
unanswered question so that they can quickly continue where they left off.

Nava PBC 10

For completed steps, rather than direct the applicant to the first question in the
completed section, we proposed directing them to the section review page instead. From
the section review page, they could view a summary of information they entered in that
step, validate their information, and navigate to whichever question they want to change
their answer to. This approach only works when the section review page displays a
granular summary of the information entered. If it only displayed a high-level overview, it
would be difficult for the applicant to identify how to change an answer to a question not
surfaced in the summary.

How we think about "edge cases" in public services
For extreme cases that seem unlikely, it's often tempting to classify them as an edge
case and sweep them under the rug. However, for public services depended upon by
millions, improperly handling an "edge case" could mean the difference between
someone being deemed eligible for health insurance or not. It's irresponsible not to
consider all the different ways the service you are building could break down.

It's irresponsible not to consider all the different ways the
service you are building could break down.

Wherever possible, we attempted to put these safeguards in place so applicants could
intuitively navigate through the experience without surprises or mistakes. If they do make
a mistake, as we all occasionally do, we made sure to provide opportunities to fix them
and continue where they left off. For complex forms like the one we were designing, it's
often difficult to anticipate every way someone might try to navigate the form, and put
safeguards in place on a case-by-case basis. Instead, by defining frameworks for thinking
about these scenarios, designing reusable patterns for addressing them, and continually
testing those patterns, we can feel more confident that the safeguards we put in place
are indeed helping people reach the finish line.

Nava PBC 11

